Nanopore sequencing and the search for life in the solar system

Aaron Burton
NASA Johnson Space Center
November 1, 2017
Overview

• Nanopore sequencing as a life detection tool
• Nanopore sequencing for human exploration
• Experiments on the international space station
• Next steps
Timeline for the origins of life on Earth

The RNA World Hypothesis (Gilbert 1986)

• RNA carries information in contemporary biology
 • Example: mRNA contains codes for proteins

• RNA performs catalytic functions in contemporary biology
 • Example: cis- and trans-splicing RNAs (Cech, Altman), catalytic center of the ribosome is RNA (Steitz)

• So RNA can do the job of both DNA and proteins, but not as well

• Conclusion: RNA preceded both DNA and proteins
 • DNA emerged as more stable informational macromolecule
 • proteins emerged as better catalysts
 • RNA maintained lesser informational and catalytic roles
But where did the RNA come from?

Possible RNA alternatives/precursors?
DNA and RNA are not the only game in town...

- Chaput + Holliger labs (2012) showed that threose nucleic acid (TNA), hexose nucleic acid (HNA) and other XNAs could carry information and be evolved to bind a ligand

Pinheiro et al. Science 2012
...even on Earth

- Methylation of DNA
- 2,6-diaminopurine in DNA of bacteriophage
- 112 base modifications used in RNA
- Proteins use 20 (or 22, or 25...) amino acids
- Need capability to look beyond just standard DNA/RNA/proteins in the search for life
Why are nanopores suited for *in situ* Astrobiology?

- Can detect broad range of charged molecules
 - Many biomolecules are charged (nucleic acids, proteins, lipids, small molecules)
- Nanopore (electrochemical) sensors are inherently small
 - Instruments can be small without sacrificing performance
- Sample preparation is faster and simpler than other commercially available sequencing platforms
Versatility of Nanopore sensing

- Possible to analyze any polymer that obstructs the pore
- Currently being applied to DNA and direct RNA sequencing, and protein analysis
- Need to modulate rate through pore and change in current depending on template
Nanopore analysis is not limited to canonical AGCT DNA

• The MinION has also been used for:
 • Direct RNA sequencing (Garalde et al. bioRxiv 2016)
 • Sequencing inosine-containing oligos (Carr lab)
 • Epigenetic sequencing with the detection of methylated bases (e.g., Rand et al. 2017; Simpson et al. 2017)
 • Nanopores have been used to characterize proteins (e.g., Oukhaled et al. 2007)
Next steps for nanopore sequencing in the search for life

- Evaluate stability for long-duration missions
 - Mars is within reach with current technology
 - Europa or other ocean world would require ruggedization
- Expand analytical approaches to ensure a broad range of DNA/RNA/protein-like molecules could be analyzed
 - Funded efforts in COLDTech, other projects in development
Nanopore sequencing on the International Space Station

Slides courtesy of Sarah Wallace, Ph.D.
NASA Johnson Space Center
Why a DNA Sequencer in Space?

Why do we need a DNA sequencer to support the human exploration of space?

- Operational environmental monitoring
 - Identification of contaminating microbes
 - Infectious disease diagnosis
 - Reduce down mass (sample return for environmental monitoring, crew health, etc.)

- Research
 - Human
 - Animal
 - Microbes/Cell lines
 - Plant

- Med Ops
 - Response to countermeasures
 - Radiation
 - Real-time analysis can influence medical intervention

- Support astrobiology science investigations
 - Technology superiorly suited to *in situ* nucleic acid-based life detection
 - Functional testing for integration into robotics for extra-planetary exploration mission
2016: The Molecular Space Age

April 19: The first molecular biology assay in space is completed, as DNA is amplified using the miniPCR thermal cycler.

April 29: RNA isolation, reverse transcription, and DNA amplification data obtained on the ISS using the Wetlab-2 qPCR platform.
2016: The Molecular Space Age

Biomolecule Sequencer Payload

- The first device to assess the capability of DNA sequencing in the microgravity environment of space
- Enabled by the MinION, developed by Oxford Nanopore Technologies
- COTS miniature DNA Sequencer
- 3 3/4 x 1 1/4 x 5/8 inches
- Less than 120 grams (with USB cable)
- Powered via USB connection
- Capable of DNA, RNA, and protein sequencing
- Launched July 18, 2016 (SpaceX-9)
Biomolecule Sequencer: the Hardware

Flow Cell: Contains the nanopore sensing technology that is required to perform the sequencing reaction

Experiment:

- Sequence a ground-prepared sample containing a mixture of genomic DNA from:
 - Bacteriophage lambda
 - *Escherichia coli*
 - Mouse – BALB/C (female)
Biomolecule Sequencer: the Experiment

Goals:
- Test the basic functionality by comparing ISS sequencing results of pre-determined samples to ground results
- Evaluate crew operability and potential for degrees of autonomy

Experiment:
- Sequence a ground-prepared sample containing a mixture of genomic DNA from:
 - Bacteriophage lambda
 - Escherichia coli
 - Mouse – BALB/C (female)
Biomolecule Sequencer: the Data

August 26th, 2016

“Welcome to systems biology in space.” – Astronaut Kate Rubins, Ph.D.
Biomolecule Sequencer: the Data

On orbit operations:
August 26, 2016
September 3, 2016
September 7, 2016
September 13, 2016
October 18, 2016
October 25, 2016
October 26, 2016
November 26, 2016
January 9, 2017

Biomolecule Sequencer: the Data

The “dawn of genomics” in space (Kate Rubins)

• No decrease in sequencing performance
• Over 284,000 reads were generated on the ISS
• Directed genome assemblies of:
 • Bacteriophage lambda
 • *E. coli*
 • Mouse mitochondrial genome
• de novo genome assemblies of:
 • Bacteriophage lambda
 • *E. coli*
• Demonstrated flow cell reuse and shelf life stability to at least 6 months in space
Meanwhile on the Ocean Floor...

Swab-to-Sequencer: July 2016

A full sample-to-sequencer process on the ocean floor and the analog testing of the joint operations of miniPCR and the MinION

NASA Extreme Environments Mission Operations (NEEMO)

Sebastian Kraves, Ph.D.
and Ezequiel (Zeke) Alvarez Saavedra, Ph.D.
Meanwhile on the Ocean Floor...

1. Environmental Swab Collection
2. DNA Extraction & Clean-Up
3. MiniPCR Amplification
4. Sample Preparation
5. Loading MinION Sequencer
6. Successful Sequencing
A Molecular Biology Lab on the Ocean Floor

Culture-independent analysis: NEEMO 21

Illumina MiSeq

Oxford Nanopore Technologies MinION

Analog tested, Analog approved.
Genes in Space-3

- Will build upon the NEEMO 21 demonstration of the joint operations between miniPCR and the MinION, as it will transition the DNA sample preparation process and sequencing to the spaceflight environment
- Enhanced capabilities available to the Genes in Space student contestants (certified reagents, consumables, and crew procedures)
- Increasing the scientific capacity of the ISS
- A series of controlled experiments testing key steps of the DNA preparation process
- Will culminate in the sequencing of unknown environmental samples from the ISS
- Genes in Space-3 launched: April 18, 2017 on OA-7

The successful implementation of this process will result in, for the first time, the ability to identify contaminating microbes in-flight. However, this means so much more than microbiology…
Increasing the scientific capacity of the ISS by facilitating state-of-the-art molecular biology research for both current and next generation ISS researchers.

Demonstrating the first identification of ISS-derived unknown microbes in space.
DNA sample to sequencer process successfully implemented – as it would be done on the ground – on the ISS! Successful: pipetting, DNA amplification, DNA clean up, library preparation, flow cell preparation, and sequencing
Astronaut Peggy Whitson collecting microbial cells from an Environmental Health Systems (EHS) Surface Sample Kit (SSK) Slide.
Genes in Space-3: Med Ops Sample

Data obtained in flight downlinked to the ground for analysis:

```
agtctgcatcgatagctag
agcatcgcacgagggaga
gtaccgattagggtatt
accccgatagggtaaga
tagcaggacatttcacg
gattacggagacttnga
tagcatacttgacaccag
```

Microbial identifications (not authorized to share yet)

Return sample processed through normal procedures in the Microbiology Lab:

Peggy selected 3 colonies for analysis (2, 3, and 5): not authorized to share yet

Success! The sequence data from Station matches the identifications obtained on the ground!
Current Capabilities

We are working to develop a spaceflight-certified catalogue of general laboratory consumables and molecular reagents to be used by ISS researchers.

Reagents
- PCR Master Mix (NEB)
- Exonuclease (NEB)
- Fragmentation Mix (ONT)
- Rapid Adaptor Mix (ONT)
- Running Buffer (ONT)

Consumables
- 1.5 ml LoBind Tubes
- 0.2 ml PCR Tube Strips
- Rainin Positive Displacement Pipettes: 10 ml, 100 ml, and 1000 ml and associated tips
- Eppendorf Pipettes: 20 ml, 200 ml, and 1000 ml and associated tips
- MinION Flow Cells

Crew Procedure Techniques
- Pipetting between numerous vessels
- Running a PCR
- Using miniPCR as a heat block
- Running the MinION

All of the operations products have been developed and are available. Reaction conditions for miniPCR and the MinION are easily customizable to any experiment. Different enzymes and reactions can be tested with certified consumables and substituted into procedures.
Future Capabilities: What can the MinION do for your research?

- Full genome assessments of model organisms
 - What is the genomic impact of radiation?
- Complete transcriptomic investigations
 - How is gene expression altered as a result of mission duration?
 - Biomarker tracking through changes in gene expression
 - Bone and muscle
 - Cardiovascular
 - Wound healing
 - CO₂ exposure
- Direct RNA Sequencing
 - How are active transcriptional processes impacted as a result of spaceflight culture?
- Epigenetic Studies
 - How are methylation patterns affected by the spaceflight environment?

How would receiving data from your in-flight investigation impact your study?
Acknowledgments

The Biomolecule Sequencer and Genes in Space-3 Payload Development Team: Sarah Stahl, Aaron Burton, Ph.D., and Kristen John, Ph.D.

BSeq Science Team
Jason Dworkin, Ph.D. – GSFC
Mark Lupisella, Ph.D. – GSFC
David Smith, Ph.D. – ARC
Kate Rubins, Ph.D. – JSC
Chris Mason, Ph.D. – Weill Cornell Medicine
Noah Alexander
Alexa McIntyre
Charles Chiu, Ph.D. – UCSF
Scot Federman
Sneha Somasekar
Doug Stryke
Guixia Yu

Oxford Nanopore Technologies
James Brayer
Sissel Juul, Ph.D.
Dan Turner, Ph.D.
David Stoddard, Ph.D.
Michael McInnes
New England BioLabs
Nicole Nichols, Ph.D.

Genes in Space-3 Collaborators Scott Copeland, Sebastian Kraves, Ph.D., and Ezequiel (Zeke) Alvarez Saavedra, Ph.D.

BSeq Flight Team
Dave Voss
Linda Gibson
Teresa Tan

Astronauts
Kate Rubins, Ph.D.
Peggy Whitson, Ph.D.

NEEMO 21 Team
Marc Reagan
Reid Wiseman, NASA
Megan McArthur, NASA
Marc O Griofa
Matthias Maurer, ESA
Noel Du Toit
Dawn Kernagis

Genes in Space-3 Flight Team
Teresa Tan
Melissa Boyer
Landon Sommer
Melanie Smith

NEEMO 22 Team
Marc Reagan
Bill Todd
Kjell Lindgren, NASA
Trevor Graff
Pedro Duque, ESA
Dom D'Agnostion
Mark Hulshbeek
Sean Moore
Thank you!